Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Arch Microbiol ; 206(5): 209, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587657

RESUMO

The F-box proteins in fungi perform diverse functions including regulation of cell cycle, circadian clock, development, signal transduction and nutrient sensing. Genome-wide analysis revealed 10 F-box genes in Puccinia triticina, the causal organism for the leaf rust disease in wheat and were characterized using in silico approaches for revealing phylogenetic relationships, gene structures, gene ontology, protein properties, sequence analysis and gene expression studies. Domain analysis predicted functional domains like WD40 and LRR at C-terminus along with the obvious presence of F-box motif in N-terminus. MSA showed amino acid replacements, which might be due to nucleotide substitution during replication. Phylogenetic analysis revealed the F-box proteins with similar domains to be clustered together while some sequences were spread out in different clades, which might be due to functional diversity. The clustering of Puccinia triticina GG705409 with Triticum aestivum TaAFB4/TaAFB5 in a single clade suggested the possibilities of horizontal gene transfer during the coevolution of P. triticina and wheat. Gene ontological annotation categorized them into three classes and were functionally involved in protein degradation through the protein ubiquitination pathway. Protein-protein interaction network revealed F-box proteins to interact with other components of the SCF complex involved in protein ubiquitination. Relative expression analysis of five F-box genes in a time course experiment denoted their involvement in leaf rust susceptible wheat plants. This study provides information on structure elucidation of F-box proteins of a basidiomycetes plant pathogenic fungi and their role during pathogenesis.


Assuntos
Basidiomycota , Proteínas F-Box , Filogenia , Puccinia , Basidiomycota/genética , Proteínas F-Box/genética
2.
BMC Plant Biol ; 24(1): 107, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347436

RESUMO

BACKGROUND: Rye (Secale cereale L.) is a cereal crop highly tolerant to environmental stresses, including abiotic and biotic stresses (e.g., fungal diseases). Among these fungal diseases, leaf rust (LR) is a major threat to rye production. Despite extensive research, the genetic basis of the rye immune response to LR remains unclear. RESULTS: An RNA-seq analysis was conducted to examine the immune response of three unrelated rye inbred lines (D33, D39, and L318) infected with compatible and incompatible Puccinia recondita f. sp. secalis (Prs) isolates. In total, 877 unique differentially expressed genes (DEGs) were identified at 20 and 36 h post-treatment (hpt). Most of the DEGs were up-regulated. Two lines (D39 and L318) had more up-regulated genes than down-regulated genes, whereas the opposite trend was observed for line D33. The functional classification of the DEGs helped identify the largest gene groups regulated by LR. Notably, these groups included several DEGs encoding cytochrome P450, receptor-like kinases, methylesterases, pathogenesis-related protein-1, xyloglucan endotransglucosylases/hydrolases, and peroxidases. The metabolomic response was highly conserved among the genotypes, with line D33 displaying the most genotype-specific changes in secondary metabolites. The effect of pathogen compatibility on metabolomic changes was less than the effects of the time-points and genotypes. Accordingly, the secondary metabolome of rye is altered by the recognition of the pathogen rather than by a successful infection. The results of the enrichment analysis of the DEGs and differentially accumulated metabolites (DAMs) reflected the involvement of phenylpropanoid and diterpenoid biosynthesis as well as thiamine metabolism in the rye immune response. CONCLUSION: Our work provides novel insights into the genetic and metabolic responses of rye to LR. Numerous immune response-related DEGs and DAMs were identified, thereby clarifying the mechanisms underlying the rye response to compatible and incompatible Prs isolates during the early stages of LR development. The integration of transcriptomic and metabolomic analyses elucidated the contributions of phenylpropanoid biosynthesis and flavonoid pathways to the rye immune response to Prs. This combined analysis of omics data provides valuable insights relevant for future research conducted to enhance rye resistance to LR.


Assuntos
Basidiomycota , Micoses , Puccinia , Transcriptoma , Secale/genética , Secale/microbiologia , Basidiomycota/fisiologia , Metaboloma , Doenças das Plantas/microbiologia
3.
Genes (Basel) ; 15(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254991

RESUMO

Peanuts play a pivotal role as an economic crop on a global scale, serving as a primary source of both edible oil and protein. Peanut rust (Puccinia arachidis Speg.) disease constitutes a significant global biotic stress, representing a substantial economic threat to the peanut industry by inducing noteworthy reductions in seed yields and compromising oil quality. This comprehensive review delves into the distinctive characteristics and detrimental symptoms associated with peanut rust, scrutinizing its epidemiology and the control strategies that are currently implemented. Notably, host resistance emerges as the most favored strategy due to its potential to surmount the limitations inherent in other approaches. The review further considers the recent advancements in peanut rust resistance breeding, integrating the use of molecular marker technology and the identification of rust resistance genes. Our findings indicate that the ongoing refinement of control strategies, especially through the development and application of immune or highly resistant peanut varieties, will have a profound impact on the global peanut industry.


Assuntos
Basidiomycota , Doenças do Tecido Conjuntivo , Eczema , Arachis/genética , Melhoramento Vegetal , Puccinia , Sementes
4.
Mycologia ; 116(2): 309-321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252498

RESUMO

Members of Puccinia (Pucciniaceae, Pucciniales) are known as plant pathogens worldwide, which are characterized by their morphology, host association, and molecular data of various genes. In the present study, 10 specimens of Puccinia were collected from four herbaceous plants (Anaphalis hancockii, Anthriscus sylvestris, Halenia elliptica, and Pilea pumila) in China and identified based on morphology and phylogeny. As a result, 10 samples represent four undescribed species of Puccinia, viz., P. apdensia, P. decidua, P. dermatis, and P. lianchengensis, spp. nov. P. apdensia is characterized by its smooth teliospores with thickened apex. P. decidua represents the first Puccinia species inhabiting the host Anaphalis hancockii and is distinguished from the other Puccinia species by its telia and uredinia surrounded by the epidermis. P. dermatis from Halenia elliptica differs from the other Puccinia species on the host genus Halenia by the telia that have epidermis and teliospores with sparsely irregular granulated protrusions. P. lianchengensis is characterized by its teliospore surface with fishnet ornamentation and urediniospores without prominent caps. All of the new species are described and illustrated in this study.


Assuntos
Basidiomycota , Puccinia , Esporos Fúngicos/genética , Plantas , Basidiomycota/genética , China
5.
Plant Dis ; 108(2): 256-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38289334

RESUMO

The challenge of wheat leaf rust on wheat production is a recurring issue. Race identification of Puccinia triticina (Pt) serves as the foundation for preventing and controlling this disease. In a 15-year study, we identified 2,900 isolates of Pt from 20 provinces, cities, or autonomous regions in China during 2007 to 2021 and found 332 virulence phenotypes with 11 predominant phenotypes: PHT (8.3%), THT (5.4%), PHK (4.5%), PHJ (3.7%), THJ (3.6%), SHJ (3.5%), THS (3.3%), FGD (2.9%), THK (2.6%), PHS (2.4%), and PHD (2.0%). The virulence frequency for 40 Lr genes was identified across different years and areas; one major reason for the race dynamics was the attenuation to Lr1 and Lr26, which was more evident in southwest China. Lr9, Lr24, Lr28, Lr38, and Lr42 maintained effectiveness in China, while Lr2c, Lr10, Lr12, Lr14a, Lr14b, Lr22a, Lr33, and Lr36 nearly lost their effectiveness against wheat leaf rust disease. No significant difference was found among predominant phenotypes in different areas (P > 0.1). However, 12 Lr sites were found to have differences in virulence frequencies with values greater than 20% across various locations; furthermore, the lowest and highest virulence values were observed in north China (Area 1) and northwest China (Area 5), respectively. According to phenotype dynamics, PHT, THT, FGD, THK, and PHS are more likely to persist over time. In addition, much attention should be given toward discovering rising combinations of virulent phenotypes.


Assuntos
Basidiomycota , Puccinia , Basidiomycota/genética , Virulência/genética , Doenças das Plantas/genética , China
6.
Theor Appl Genet ; 137(1): 30, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265482

RESUMO

KEY MESSAGE: Sr67 is a new stem rust resistance gene that represents a new resource for breeding stem rust resistant wheat cultivars Re-appearance of stem rust disease, caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), in different parts of Europe emphasized the need to develop wheat varieties with effective resistance to local Pgt populations and exotic threats. A Kyoto University wheat (Triticum aestivum L.) accession KU168-2 was reported to carry good resistance to leaf and stem rust. To identify the genomic region associated with the KU168-2 stem rust resistance, a genetic study was conducted using a doubled haploid (DH) population from the cross RL6071 × KU168-2. The DH population was phenotyped with three Pgt races (TTKSK, TPMKC, and QTHSF) and genotyped using the Illumina 90 K wheat SNP array. Linkage mapping showed the resistance to all three Pgt races was conferred by a single stem rust resistance (Sr) gene on chromosome arm 6AL, associated with Sr13. Presently, four Sr13 resistance alleles have been reported. Sr13 allele-specific KASP and STARP markers, and sequencing markers all showed null alleles in KU168-2. KU168-2 showed a unique combination of seedling infection types for five Pgt races (TTKSK, QTHSF, RCRSF, TMRTF, and TPMKC) compared to Sr13 alleles. The phenotypic uniqueness of the stem rust resistance gene in KU168-2 and null alleles for Sr13 allele-specific markers showed the resistance was conferred by a new gene, designated Sr67. Since Sr13 is less effective in hexaploid background, Sr67 will be a good source of stem rust resistance in bread wheat breeding programs.


Assuntos
Basidiomycota , Puccinia , Triticum , Humanos , Melhoramento Vegetal , Alelos
7.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256123

RESUMO

Ca2+ plays a crucial role as a secondary messenger in plant development and response to abiotic/biotic stressors. Calcium-dependent protein kinases (CDPKs/CPKs) are essential Ca2+ sensors that can convert Ca2+ signals into downstream phosphorylation signals. However, there is limited research on the function of CDPKs in the context of wheat-Puccinia striiformis f. sp. tritici (Pst) interaction. In this study, we aimed to address this gap by identifying putative CDPK genes from the wheat reference genome and organizing them into four phylogenetic clusters (I-IV). To investigate the expression patterns of the TaCDPK family during the wheat-Pst interaction, we analyzed time series RNA-seq data and further validated the results through qRT-PCR assays. Among the TaCDPK genes, TaCDPK7 exhibited a significant induction during the wheat-Pst interaction, suggesting that it has a potential role in wheat resistance to Pst. To gain further insights into the function of TaCDPK7, we employed virus-induced gene silencing (VIGS) to knock down its expression which resulted in impaired wheat resistance to Pst, accompanied by decreased accumulation of hydrogen peroxide (H2O2), increased fungal biomass ratio, reduced expression of defense-related genes, and enhanced pathogen hyphal growth. These findings collectively suggest that TaCDPK7 plays an important role in wheat resistance to Pst. In summary, this study expands our understanding of wheat CDPKs and provides novel insights into their involvement in the wheat-Pst interaction.


Assuntos
Peróxido de Hidrogênio , Puccinia , Triticum , Triticum/genética , Peróxido de Hidrogênio/farmacologia , Filogenia , Proteínas Quinases/genética
8.
Phytopathology ; 114(1): 251-257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37344756

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases threatening wheat production both in Turkey and worldwide. However, the underlying genetic dynamics of Pst populations are not fully known in Turkey. To determine the population genetic structure and migration network among regional Pst populations, a total of 140 Pst isolates collected from six geographical regions of Turkey from 2018 to 2020 were sampled and genotyped using 21 simple sequence repeat loci. A total of 70 multilocus genotypes were identified and classified into the three major genetic groups by Bayesian assignment. The highest genotypic diversity was detected in Southeastern Anatolia, showing its critical role as one of the source populations to trigger possible stripe rust epidemics. Analysis of molecular variance revealed the highest variation (90.25%) within isolates. The migration network generated by the number of effective migrants showed that the highest migration (1.0) was determined between Southeastern Anatolia and Central Anatolia, and considerable levels of migration (>0.2) were determined among the other regions, except for the Black Sea. Linkage equilibrium (P ≥ 0.05) was detected for many geographical regions, except for Marmara (P = 0.00) and the Mediterranean (P = 0.03), suggesting that reproduction of Pst populations is most likely sexual or mixed (sexual and clonal). To sum up, this is the first study on the genetic relationships and population genetic structure of the Pst population in Turkey, and these findings may provide critical information to develop management strategies for wheat stripe rust.


Assuntos
Basidiomycota , Puccinia , Triticum , Triticum/genética , Turquia , Teorema de Bayes , Doenças das Plantas/genética , Variação Genética , Basidiomycota/genética
9.
Phytopathology ; 114(1): 211-219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486148

RESUMO

Stripe rust, a fungal disease caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases affecting wheat production areas worldwide. In recent years in China, wheat stripe rust has caused huge yield losses throughout the vast Huang-Huai-Hai region, including the eastern coast regions, especially Shandong province. The aim of the present study was to explore the population structure and potential inoculum sources of the pathogen in this region. A total of 234 Pst isolates in 2021 were collected and isolated from seven provinces and identified for virulence phenotypes using 19 Chinese differentials and for genotypes using 17 single-nucleotide polymorphism-based Kompetitive allele-specific PCR markers. The virulence phenotype tests identified predominant races CYR34 (18.0%) and CYR32 (16.0%) in Shandong, which were similar to the results in Henan province, also with the predominant races CYR34 (21.9%) and CYR32 (18.8%). Based on the virulence data of phenotyping, the Pst populations in Shandong, Hubei, and Henan were similar. The genotypic analysis revealed remarkable gene flows among the Shandong, Hubei, Henan, Yunnan, and Guizhou populations, showing a migration of Pst from the southwestern oversummering regions to Shandong through the winter spore production regions. Genetic structure analysis also indicated an additional migration route from the northwestern oversummering regions through winter spore production regions to Shandong. The results are useful for understanding stripe rust epidemiology in the eastern coast region and improving control of the disease throughout the country.


Assuntos
Basidiomycota , Doenças das Plantas , Puccinia , China , Doenças das Plantas/microbiologia , Genótipo , Fenótipo
10.
Plant Dis ; 108(1): 175-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37606959

RESUMO

The Eurasian crown rust fungus Puccinia coronata var. coronata (Pcc) was recently reported in North America and is widespread across the Midwest and Northeast United States. Pcc is a close relative of major pathogens of oats, barley, and turfgrasses. It infects two highly invasive wetland plants, glossy buckthorn (Frangula alnus) and reed canarygrass (Phalaris arundinacea), and could be useful as an augmentative biological control agent. We conducted large greenhouse trials to assess the host specificity of Pcc and determine any threat to cultivated cereals, turfgrasses, or native North American species. A total of 1,830 accessions of cereal crop species and 783 accessions of 110 other gramineous species were evaluated. Young plants were first inoculated with a composite uredinial inoculum derived from aecia. Accessions showing sporulation were further tested with pure urediniospore isolates. Sixteen potential aecial hosts in the families Rhamnaceae and Elaeagnaceae were tested for susceptibility through inoculation with germinating teliospores. Thirteen grass species within five genera in the tribe Poeae (Apera, Calamagrostis, Lamarckia, Phalaris, and Puccinellia) and four species in Rhamnaceae (Frangula alnus, F. californica, F. caroliniana, and Rhamnus lanceolata) were found to be susceptible to Pcc, with some species native to North America. All assessed crop species and turfgrasses were resistant. Limited sporulation, however, was observed on some resistant species within Poeae and four other tribes: Brachypodieae, Bromeae, Meliceae, and Triticeae. Among these species are oats, barley, and Brachypodium distachyon, suggesting the possible use of Pcc in studies of nonhost resistance.


Assuntos
Basidiomycota , Hordeum , Puccinia , Humanos , Áreas Alagadas , Doenças das Plantas/microbiologia , Especificidade de Hospedeiro , Avena/microbiologia
11.
Plant Dis ; 108(1): 20-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580885

RESUMO

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat in South Africa (SA) and is primarily controlled using resistant cultivars. Understanding virulence diversity of Pgt is essential for successful breeding of resistant cultivars. Samples of infected wheat stems were collected across the major wheat-growing regions of SA from 2016 to 2020 to determine the pathogenic variability of Pgt isolates. Seven races were identified from 517 isolates pathotyped. The most frequently found races were 2SA104 (BPGSC + Sr9h,27,Kw) (35% frequency) and 2SA88 (TTKSF + Sr8b) (33%). Race 2SA42 (PTKSK + Sr8b), which was found in 2017, and 2SA5 (BFGSF + Sr9h), identified in 2017, are new races. The Ug99 variant race 2SA42 is similar in its virulence to 2SA107 (PTKST + Sr8b) except for avirulence to Sr24 and virulence to Sr8155B1. Race 2SA5 is closely related in its virulence to existing races that commonly infect triticale. Certain races showed limited geographical distribution. Races 2SA5, 2SA105, and 2SA108 were found only in the Western Cape, whereas 2SA107 and 2SA42 were detected only in the Free State province. The new and existing races were compared using microsatellite (SSR) marker analysis and their virulence on commercial cultivars was also determined. Seedling response of 113 wheat entries against the new races, using 2SA88, 2SA88+9h, 2SA106, and 2SA107 as controls, revealed 2SA107 as the most virulent (67 entries susceptible), followed by 2SA42 (64), 2SA106 (60), 2SA88+9h (59), 2SA88 (25), and 2SA5 (17). Thus, 2SA5 may not pose a significant threat to local wheat production. SSR genotyping revealed that 2SA5 is genetically distinct from all other SA Pgt races.


Assuntos
Basidiomycota , Doenças das Plantas , Puccinia , África do Sul , Resistência à Doença/genética , Melhoramento Vegetal , Basidiomycota/fisiologia
12.
Plant Dis ; 108(1): 13-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37526485

RESUMO

Wheat leaf rust (Lr), which is caused by Puccinia triticina Eriks. (Pt), is one of the most important wheat diseases affecting wheat production globally. Using resistant wheat cultivars is the most economical and environmentally friendly way to control leaf rust. The Italian wheat cultivar Libellula has demonstrated good resistance to Lr in field studies. To identify the genetic basis of Lr resistance in 'Libellula', 248 F6 recombinant inbred lines from the cross 'Libellula'/'Huixianhong' was phenotyped for Lr severity in seven environments: the 2014/2015, 2016/2017, 2017/2018, and 2018/2019 cropping seasons at Baoding, Hebei Province, and the 2016/2017, 2017/2018, and 2018/2019 crop seasons at Zhoukou, Henan Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult-plant resistance in the population. Six QTLs were consequently detected and designated as QLr.hebau-1AL and QLr.hebau-1AS that were presumed to be new and QLr.hebau-1BL, QLr.hebau-3AL, QLr.hebau-4BL, and QLr.hebau-7DS that were identified at similar physical positions as previously reported QTLs. Based on chromosome positions and molecular marker tests, QLr.hebau-1BL and QLr.hebau-7DS share similar flanking markers with Lr46 and Lr34, respectively. Lr46 and Lr34 are race nonspecific adult plant resistance (APR) genes for leaf rust and stripe rust and powdery mildew. QLr.hebau-4BL showed multiple disease resistance to leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTL identified in this study, as well as their closely linked markers, may potentially be used in marker-assisted selection in wheat breeding.


Assuntos
Basidiomycota , Puccinia , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Mapeamento Cromossômico , Basidiomycota/genética , Itália
13.
Pest Manag Sci ; 80(1): 115-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36710281

RESUMO

Californian thistle (Cirisum arvense) is a troublesome weed in pastures and cropping systems. The fungal biocontrol agent Puccinia punctiformis, commonly referred to as thistle rust, performs inconsistently on C. arvense. Problems with P. punctiformis establishment and control of C. arvense may be attributable to differing plant endophytic populations in various environments. This article provides an overview of the relationships between endophytes and their host, but also between endophytes and pathogens with a focus on rust pathogens. This review provides insights into reasons why P. punctiformis performs inconsistently and identifies gaps in our knowledge. Filling these gaps may help to improve performance of this classical fungal biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Cirsium , Endófitos , Cirsium/microbiologia , Puccinia
14.
Braz. j. biol ; 84: e249472, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364512

RESUMO

Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores. To study the genetic structure of the leaf rust population 20 RAPD primers were evaluated on 15 isolates samples collected in Pakistan. A total of 105 RAPD fragments were amplified with an average of 7 fragments per primer. The number of amplified fragments varied from 1 to 12. GL Decamer L-07 and GL Decamer L-01 amplified the highest number of bands (twelve) and primer GL Decamer A-03 amplified the lowest number of bands i.e one. Results showed that almost all investigated isolates were genetically different that confirms high genetic diversity within the leaf rust population. Rust spores can follow the migration pattern in short and long distances to neighbor areas. Results indicated that the greatest variability was revealed by 74.9% of genetic differentiation within leaf rust populations. These results suggested that each population was not completely identical and high gene flow has occurred among the leaf rust population of different areas. The highest differentiation and genetic distance among the Pakistani leaf rust populations were detected between the leaf rust population in NARC isolate (NARC-4) and AARI-11and the highest similarity was observed between NARC isolates (NARC-4) and (NARC-5). The present study showed the leaf rust population in Pakistan is highly dynamic and variable.


A ferrugem da folha, causada por Puccinia triticina, é a ferrugem mais comum do trigo. O fungo é um parasita obrigatório, capaz de produzir urediniósporos infecciosos. Para estudar a estrutura genética da população de ferrugem da folha, 20 primers RAPD foram avaliados em 15 amostras de isolados coletadas no Paquistão. Um total de 105 fragmentos RAPD foram amplificados com uma média de 7 fragmentos por primer. O número de fragmentos amplificados variou de 1 a 12. GL Decamer L-07 e GL Decamer L-01 amplificaram o maior número de bandas (doze), e o primer GL Decamer A-03 amplificou o menor número de bandas, ou seja, um. Os resultados mostraram que quase todos os isolados investigados eram geneticamente diferentes, o que confirma a alta diversidade genética na população de ferrugem da folha. Os esporos de ferrugem podem seguir o padrão de migração em distâncias curtas e longas para áreas vizinhas. Os resultados indicaram que a maior variabilidade foi revelada por 74,9% da diferenciação genética nas populações de ferrugem. Esses resultados sugeriram que cada população não era completamente idêntica e um alto fluxo gênico ocorreu entre a população de ferrugem da folha de diferentes áreas. A maior diferenciação e distância genética entre as populações de ferrugem da folha do Paquistão foram detectadas entre a população de ferrugem da folha no isolado NARC (NARC-4) e AARI-11 e a maior similaridade foi observada entre os isolados NARC (NARC-4) e (NARC-5). O presente estudo mostrou que a população de ferrugem da folha no Paquistão é altamente dinâmica e variável.


Assuntos
Triticum/parasitologia , Biomarcadores , Pragas da Agricultura , Fungos/genética , Puccinia/genética
15.
Plant Cell Environ ; 47(3): 947-960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105492

RESUMO

Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells and manipulate host processes. In a previous study, we identified a glycine-serine-rich effector PstGSRE4, which was proven to regulate the reactive oxygen species (ROS) pathway by interacting with TaCZSOD2. In this study, we further demonstrated that PstGSRE4 interacts with wheat glyceraldehyde-3-phosphate dehydrogenase TaGAPDH2, which is related to ROS signalling. In wheat, silencing of TaGAPDH2 by virus-induced gene silencing increased the accumulation of ROS induced by the Pst virulent race CYR31. Overexpression of TaGAPDH2 decreased the accumulation of ROS induced by the avirulent Pst race CYR23. In addition, TaGAPDH2 suppressed Pst candidate elicitor Pst322-triggered cell death by decreasing ROS accumulation in Nicotiana benthamiana. Knocking down TaGAPDH2 expression attenuated Pst infection, whereas overexpression of TaGAPDH2 promoted Pst infection, indicating that TaGAPDH2 is a negative regulator of plant defence. In N. benthamiana, PstGSRE4 stabilized TaGAPDH2 through inhibition of the 26S proteasome-mediated destabilization. Overall, these results suggest that TaGAPDH2 is hijacked by the Pst effector as a negative regulator of plant immunity to promote Pst infection in wheat.


Assuntos
Basidiomycota , Imunidade Vegetal , Puccinia , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas , Basidiomycota/metabolismo
16.
Sci Rep ; 13(1): 20411, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990120

RESUMO

Deploying disease-resistant cultivars is one of the most effective control strategies to manage crop diseases such as wheat leaf rust, caused by Puccinia triticina. After harvest, this biotrophic fungal pathogen can survive on wheat volunteers present at landscape scale and constitute a local source of primary inoculum for the next cropping season. In this study, we characterised the diversity of P. triticina populations surveyed on wheat volunteer seedlings for six consecutive years (2007-2012) at the landscape scale. A total of 642 leaf rust samples classified in 52 virulence profiles (pathotypes) were collected within a fixed 5-km radius. The pathotype composition (identity and abundance) of field-collected populations was analyzed according to the distance between the surveyed wheat plots and to the cultivars of origin of isolates. Our study emphasised the high diversity of P. triticina populations on wheat volunteers at the landscape scale. We observed an impact of cultivar of origin on pathogen population composition. Levels of population diversity differed between cultivars and their deployment in the study area. Our results suggest that wheat volunteers could provide a significant though highly variable contribution to the composition of primary inoculum and subsequent initiation of leaf rust epidemics.


Assuntos
Basidiomycota , Triticum , Humanos , Triticum/microbiologia , Doenças das Plantas/microbiologia , Puccinia
17.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834079

RESUMO

Switchgrass (Panicum virgatum L.) can be infected by the rust pathogen (Puccinia novopanici) and results in lowering biomass yields and quality. Label-free quantitative proteomics was conducted on leaf extracts harvested from non-infected and infected plants from a susceptible cultivar (Summer) at 7, 11, and 18 days after inoculation (DAI) to follow the progression of disease and evaluate any plant compensatory mechanisms to infection. Some pustules were evident at 7 DAI, and their numbers increased with time. However, fungal DNA loads did not appreciably change over the course of this experiment in the infected plants. In total, 3830 proteins were identified at 1% false discovery rate, with 3632 mapped to the switchgrass proteome and 198 proteins mapped to different Puccinia proteomes. Across all comparisons, 1825 differentially accumulated switchgrass proteins were identified and subjected to a STRING analysis using Arabidopsis (A. thaliana L.) orthologs to deduce switchgrass cellular pathways impacted by rust infection. Proteins associated with plastid functions and primary metabolism were diminished in infected Summer plants at all harvest dates, whereas proteins associated with immunity, chaperone functions, and phenylpropanoid biosynthesis were significantly enriched. At 18 DAI, 1105 and 151 proteins were significantly enriched or diminished, respectively. Many of the enriched proteins were associated with mitigation of cellular stress and defense.


Assuntos
Basidiomycota , Panicum , Puccinia , Proteoma/metabolismo , Panicum/genética , Basidiomycota/genética
18.
Mol Plant Pathol ; 24(12): 1522-1534, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37786323

RESUMO

Wheat cultivar Xiaoyan 6 (XY6) has high-temperature seedling-plant (HTSP) resistance to Puccinia striiformis f. sp. tritici (Pst). However, the molecular mechanism of Pst effectors involved in HTSP resistance remains unclear. In this study, we determined the interaction between two Pst effectors, PstCEP1 and PSTG_11208, through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and pull-down assays. Transient overexpression of PSTG_11208 enhanced HTSP resistance in different temperature treatments. The interaction between PstCEP1 and PSTG_11208 inhibited the resistance enhancement by PSTG_11208. Furthermore, the wheat apoplastic thaumatin-like protein 1 (TaTLP1) appeared to recognize Pst invasion by interacting with PSTG_11208 and initiate the downstream defence response by the pathogenesis-related protein TaPR1. Silencing of TaTLP1 and TaPR1 separately or simultaneously reduced HTSP resistance to Pst in XY6. Moreover, we found that PstCEP1 targeted wheat ferredoxin 1 (TaFd1), a homologous protein of rice OsFd1. Silencing of TaFd1 affected the stability of photosynthesis in wheat plants, resulting in chlorosis on the leaves and reducing HTSP resistance. Our findings revealed the synergistic mechanism of effector proteins in the process of pathogen infection.


Assuntos
Basidiomycota , Plântula , Plântula/metabolismo , Triticum/genética , Triticum/metabolismo , Temperatura , Puccinia , Basidiomycota/fisiologia , Doenças das Plantas
19.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686178

RESUMO

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. Tritici (Pst). It significantly impacts wheat yields in Xinjiang, China. Breeding and promoting disease-resistant cultivars carrying disease-resistance genes remains the most cost-effective strategy with which to control the disease. In this study, 17 molecular markers were used to identify Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, Yr26, Yr41, Yr44, and Yr50 in 82 wheat cultivars from Xinjiang. According to the differences in SNP loci, the KASP markers for Yr30, Yr52, Yr78, Yr80, and Yr81 were designed and detected in the same set of 82 wheat cultivars. The results showed that there was a diverse distribution of Yr genes across all wheat cultivars in Xinjiang, and the detection rates of Yr5, Yr15, Yr17, Yr26, Yr41, and Yr50 were the highest, ranging from 74.39% to 98.78%. In addition, Yr5 and Yr15 were prevalent in spring wheat cultivars, with detection rates of 100% and 97.56%, respectively. A substantial 85.37% of wheat cultivars carried at least six or more different combinations of Yr genes. The cultivar Xindong No.15 exhibited the remarkable presence of 11 targeted Yr genes. The pedigree analysis results showed that 33.33% of Xinjiang wheat cultivars shared similar parentage, potentially leading to a loss of resistance against Pst. The results clarified the Yr gene distribution of the Xinjiang wheat cultivars and screened out varieties with a high resistance against Pst.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Biomarcadores , China , Resistência à Doença/genética , Puccinia
20.
Funct Integr Genomics ; 23(3): 213, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378707

RESUMO

Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Açúcares , Puccinia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...